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Abstract 

 

The derivation of Bell’s Inequality in Bell (1964; hereafter, B64) depends critically on the use of 

the equation  𝐴(𝐚, 𝜆) = −𝐵(𝐚, 𝜆) . This equation corresponds to the case in which the two 

detectors A and B are oriented parallel to each other. In B64, the inequality is not derived for the 

more general case, in which detectors A and B are oriented neither parallel nor anti-parallel to 

each other. The inequality therefore does not address this case, which is the case of principal 

interest. Contrary to the conclusion of B64, Bell’s Inequality tells us nothing, one way or the 

other, about the potential status in quantum theory of hidden variables, local or otherwise, or of 

non-locality (“spooky action”). 

 

Introduction 

 

As discussed in my recent preprint (Cember, 2020), the mathematical-physical argument that is 

today called Bell’s Theorem (Bell, 1964; hereafter, B64), is not a definitive proof of non-locality. 

This is due, among other reasons, to the presence of two independent errors in its algebraic logic, 

either of which alone is fatal to the argument. The purpose of this short paper is to explain one of 
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the two algebraic logic errors as concisely as possible. It is not the purpose of the present paper 

to argue for or against non-locality.  

 

It is assumed here that the reader is familiar with B64. Thus, no background material is 

presented. References are kept to a minimum. The symbols used in this paper are the same as 

those used in B64, with the same meanings assigned to them. Equation numbers are the same as 

those used in B64.
3
 This paper is a short version of the material presented in Section 3 of Cember 

(2021). For a fuller discussion of this and other material, including the other, independent, fatal 

algebraic logic error, please see Cember (2020).  

 

Dependence of the derivation of Bell’s Inequality on its algebraic assumptions
4
 

 

In the mathematical symbolism used by B64 to describe the thought experiment of Bohm (1951), 

there are three possible cases of the relationship between the respective results A and B, obtained 

for one pair of particles in the two detectors A and B, as a function of the orientations of the unit 

vectors a and b. These are  

 

Case I:         when    𝐚 ⋅ 𝐛 =     1,        𝐴(𝐚, 𝜆) = −𝐵(𝐛, 𝜆) 

Case II:       when    𝐚 ⋅ 𝐛 =  −1,       𝐴(𝐚, 𝜆) = 𝐵(𝐛, 𝜆) 

Case III:      when   |𝐚 ⋅ 𝐛| ≠    1,       𝐴(𝐚, 𝜆)  = 𝐵(𝐛, 𝜆)    or5    𝐴(𝐚, 𝜆) = −𝐵(𝐛, 𝜆)  

 

These three cases (not identified by these names in B64) reflect the quantum theory of the Bohm 

experiment. They are mutually exclusive cases and they collectively exhaust all possibilities for 

the experimental result for one pair of particles. 

 

Case I corresponds to Equation (13) in B64: 

 

𝐴(𝐚, 𝜆) = −𝐵(𝐚, 𝜆)  .     (13) 

 

Equation (2) of B64 is 

 

𝑃(𝐚, 𝐛) = ∫ 𝑑𝜆 𝜌(𝜆)  𝐴(𝐚, 𝜆)𝐵(𝐛, 𝜆)  .     (2) 
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Equation (13) is substituted into Equation (2) to obtain Equation (14): 

 

𝑃(𝐚, 𝐛) = − ∫ 𝑑𝜆 𝜌(𝜆)  𝐴(𝐚, 𝜆) 𝐴(𝐛, 𝜆)  .     (14) 

 

Equation (14) may be written in terms of an alternate setting of one of the detectors, setting it to 

c rather than to b: 

 

𝑃(𝐚, 𝐜) = − ∫ 𝑑𝜆 𝜌(𝜆)  𝐴(𝐚, 𝜆) 𝐴(𝐜, 𝜆)  .              

 

The preceding equation is then subtracted from Equation (14) to obtain the following 

unnumbered equation, which I will call Equation (A): 

 

𝑃(𝐚, 𝐛) −  𝑃(𝐚, 𝐜) =  − ∫ 𝑑𝜆 𝜌(𝜆)  𝐴(𝐚, 𝜆) 𝐴(𝐛, 𝜆) − 𝐴(𝐚, 𝜆) 𝐴(𝐜, 𝜆)  .     (A)       

 

The next manipulation is to factor the integrand of Equation (A) to obtain another unnumbered 

equation, which I will call Equation (B): 

 

𝑃(𝐚, 𝐛) −  𝑃(𝐚, 𝐜) = ∫ 𝑑𝜆 𝜌(𝜆)  𝐴(𝐚, 𝜆) 𝐴(𝐛, 𝜆)[ 𝐴(𝐛, 𝜆) 𝐴(𝐜, 𝜆) − 1 ]  .     (B)    

 

After further manipulation, including application of the absolute value operator, Equation (15), 

known today as Bell’s Inequality, is obtained: 

 

1 + 𝑃(𝐛, 𝐜)  ≥ | 𝑃(𝐚, 𝐛) −  𝑃(𝐚, 𝐜) |  .    (15)     
 

Equation (15) is derived for pairs of detector settings, i.e., experimental configurations, selected 

only from Case I. For P(a, b), the quantum theory gives us 

 

𝑃(𝐚, 𝐛) =  − 𝐚 ⋅ 𝐛  . 
 

Not surprisingly, then, for a = b = c, for which Case I obtains for all three of the unordered pairs 

of unit vectors that can be selected from the set a, b, c
6
, Bell’s Inequality, Equation (15), is 

satisfied by values of P(a, b) computed from the quantum theory. 

  

In analogy to Equation (13), Case II may be written as 

 

𝐴(𝐚, 𝜆) = 𝐵(−𝐚, 𝜆)  , (C) 
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which I will call  Equation (C). Equation (C) does not explicitly appear in B64. The derivation of 

Equation (15) in B64 takes no explicit account of experimental configurations that include Case 

II. Properly speaking, Equation (15) in B64 does not address Case II. It is not possible for Case II 

to hold at once for all three of the unordered pairs of unit vectors that may be selected from the 

set a, b, c. However, although it is not shown in B64, using Equations (13) and (C), Equation 

(15) can be derived for either of the relations  a = − b = c  or  a = b = − c, by a method similar to 

that used in B64. These two relations among a, b and c
7
 are each a combination of Case I and 

Case II. For either of these relations among a, b and c, Bell’s Inequality, Equation (15), is 

satisfied by values of P(a, b) computed from the quantum theory.  

 

Thus, for Case I, and also for a combination of Case I and Case II, Bell’s Inequality is 

compatible with the quantum theory of the Bohm experiment.  

 

Equation (15) as derived in B64 takes no account of Case III. For Case III, the factorization that 

makes Equation (A) into Equation (B) is impossible, because neither Equation (13) nor Equation 

(C) may be used. Thus, for experimental configurations involving Case III, Bell’s Inequality, as 

derived in B64, makes no algebraic assertion about the results of experiment for Case III. It is 

irrelevant to Case III.  

 

The counter-example 

 

Recall that for P(a, b), the quantum theory gives 𝑃(𝐚, 𝐛) =  − 𝐚 ⋅ 𝐛. The counter-example that is 

chosen in B64 to show that Bell’s Inequality is incompatible with the quantum theory is 

 

𝐚 ⋅ 𝐜 = 0      and    𝐚 ⋅ 𝐛 =  𝐛 ⋅ 𝐜 =  1 √2  .⁄  

 

This example may be visualized as two mutually orthogonal unit vectors a and c, with b as a 

third unit vector lying in the common plane of a and c at an angle of 45° from each. In this case,  

Equation (15) becomes 

 

1 − cos 45°  ≥   | − cos 45°  −  0 |  ,     
 

or  

 

0.293  ≥  0.707  , 

 

which is obviously false. This counter-example is offered in B64 to show that the use of the 

variable  to represent any hidden variable leads to a contradiction with the quantum theory of 

the Bohm experiment.  
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More generally, it may be noted that for 𝐚 ⋅ 𝐜 = 0, Equation (15) is false for any unit vector b 

lying in the quadrant of the plane between a and c. There are thus many “counter-examples” 

available. However, all such “counter-examples,” including the “counter-example” in B64, are 

drawn from Case III, the case that Bell’s Inequality, does not cover. Thus they are not “counter-

examples” at all. Rather, they are observations that Equation (15) does not hold in the domain for 

which it was not derived; a domain which is, moreover, disjoint from the domain for which it 

was derived. This observation ought not to be seen as surprising or enlightening. The application 

of Bell’s Inequality to Case III, for which it was not derived, is a fatal error of algebraic logic in 

B64. 

 

Conclusions 

 

Given the unsurprising fact that B64’s distinctive scheme of unspecified functions and variables 

A, B,  and (), related by Equation (13), does not work for Case III, are we to draw the 

conclusion that some alternative scheme that would work for Case III, cannot possibly exist? The 

answer is: No, that simply does not follow. 

 

Final remark 

 

From the failure of B64 as a proof of non-locality, it does not follow that non-locality as a 

proposition must be false. It only means that B64 fails to throw any additional light, relative to 

what was already in the literature before its publication, on the question of what the truth value 

of the proposition of non-locality actually is.  

 

There may be reasons other than B64 to embrace non-locality. One reason, of course, is the very 

analysis of quantum mechanics made by Einstein, Podolsky and Rosen (1935), although they 

themselves rejected non-locality because of its implications. Many other authors have put 

forward additional arguments for non-locality, including, though not limited to, other ways of 

developing Equation (15). Those other reasons and other arguments are not evaluated here.   
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