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The following changes were made in the revision of 22 November 2020, relative to that of 4 July 2020: 

1. Known typographical or syntactical errors were corrected. 

2. The reference to Sanctuary (2006) was added. 

3. A few words were added or deleted to improve clarity. 

4. Footnote 14 was rewritten for clarity. 

 

The following changes were made in the revisions of 22 and 24 January 2021, relative to that of 22 November 2020: 

1. A few sentences were added to the abstract. 

 

2. Some italics were removed in Section 3. 

 

3. A few words and sentences were added, removed, or moved to improve clarity. 

 

4. The references to Christian (2018) and Muchowski (2020) were added. 

 

 

The following changes were made in the revision of 24 January 2022, relative to that of 24 January 2021: 

 

1. A few words and sentences were added, removed, or moved to improve clarity. 

 

2. Figure 2 was deleted as unnecessary. 

 



2 
 

A Critical Re-examination of Bell’s Theorem 

 

by Richard P. Cember 

 

Takoma Park, Maryland, U.S.A. 

4 July 2020 

 

(Slightly revised and corrected, 22 November 2020; 

22 and 24 January 2021; 24 January 2022) 

 

rcember.crbt@gmail.com 

 

Abstract 

 

 Bell’s Theorem (Bell, 1964; hereafter, B64) is widely considered to be a definitive proof 

of “non-locality,” or, as Einstein called it, “spooky action at a distance.” In the present article it 

is shown that the derivation of Bell’s Inequality in B64 contains mathematical errors, and that 

therefore Bell’s Theorem is not a proof of non-locality. In this respect the present article is a 

critique of Bell’s Theorem principally on grounds of internal consistency; it does not attempt 

directly to resolve the foundational problem of non-locality. Moreover, it is argued here that even 

if Bell’s Theorem did not contain mathematical errors, it would still not be a definitive proof of 

non-locality because it addresses only deterministic hidden variables, a category which is not 

comprehensive of all potentially reasonable hidden-variable theories. 

 Bell’s Theorem is an analysis of Bohm’s (1951a) thought experiment, which concerns 

two spin-½ particles in the singlet state that become separated and move in opposite directions. 

The nominal program of B64 is as follows. To the assumptions of the quantum theory of the 

Bohm thought experiment, B64 adds additional assumptions concerning hypothetical local 

hidden variables. Using these additional assumptions, B64 derives an inequality (Bell’s 

Inequality) describing the predicted results of the experiment. The inequality is then compared to 

the predictions of the quantum theory. The derived inequality fails to agree with the quantum-

theoretical prediction. The inequality also fails to agree with the results of experimental 

realizations of the Bohm thought experiment, which, with one accidental exception, occurred 

later than the publication of B64. The failure of the inequality to agree with the predictions of the 

quantum theory and with the results of experimental realizations − which agree with each other − 

is taken to refute the additional assumptions of B64 concerning local hidden variables, and 

therefore to constitute a proof of non-locality (spooky action).  

 The argument of Bell’s Theorem, however, fails in at least three independent respects. 

 (1) The derivation of Bell’s Inequality in B64 depends critically on an inadmissible 

algebraic substitution. 

 (2) The derivation of Bell’s Inequality in B64, even if it were algebraically valid, would 

exclude only hypothetical non-local hidden variables, not local ones. The apparent applicability 

of Bell’s Inequality to the case of local hidden variables is the result of confusion caused by a 

poor choice of notation. 
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 (3) The schema of B64 addresses only the case of hypothetical deterministic hidden 

variables. Determinism (though not by that name) is one of the demands of Einstein, Podolsky 

and Rosen (1935). B64 does not address the case of hypothetical hidden variables that influence 

the local probability distributions for the outcomes of observations but do not uniquely determine 

the outcomes. Thus, even if it were otherwise valid, Bell’s Theorem would not constitute an 

airtight proof of non-locality simply because it does not cover this important class of cases. 

 The failure of Bell’s Inequality to agree with experimental realizations of the Bohm 

experiment has been taken as incontrovertible proof of the reality of spooky action. However, 

theoretical predictions may fail to agree with the results of experiment for reasons that do not 

signify anything about the truth or falsehood of their assumptions. In particular, they may fail 

because of errors in the logic that carries their assumptions into their predictions. This is the case 

with Bell’s Inequality. 

 There might be good reasons to accept non-locality, a.k.a. spooky action. However, if 

there are, Bell’s Theorem is not one of them.  
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Prefatory notes 

 

1. Potential to skip some sections. Some readers of this article will already be very familiar with 

this subject, others not. Because of the universal importance of the foundational questions of 

quantum mechanics, and the broad interest in them among physicists in general, I have tried to 

write this article in such a way as make it accessible to all physicists. However, the article does 

assume that at some point in his or her education the reader has been exposed to the foundational 

questions of quantum mechanics. Readers who are very familiar with the subject may wish to 

skip some sections or appendices, at least on a first reading; these sections and appendices are 

indicated by an asterisk (*).  

 

2. Terminology. In this article I use the term “Bell’s Theorem” to refer to the whole of the main 

line of the argument of B64, including the counter-example and the resulting conclusions, and 

not solely to the derivation per se of Bell’s Inequality. When referring specifically to the 

derivation of the inequality and not to the argument of B64 as a whole, I use the word 

“derivation”. 

 

*Historical background 

 

Despite its great experimental success, quantum mechanics has always been plagued by what are 

often called its “foundational” questions or problems. One of these is the phenomenon famously 

described by Albert Einstein in a letter to Max Born (Born, 1971) as “spooky actions at a 

distance”. 

 

Einstein and Niels Bohr met for the first time in Berlin in 1920 (Bohr, 1949). At this first 

meeting they discussed what today we call foundational questions. A private discussion thus 

begun in 1920 became a friendly but vigorous public debate at the Solvay Conferences of 1927 

and 1930. The thread of the debate is recorded by Bohr (1949).  

 

In 1935, Einstein, together with his associates Boris Podolsky and Nathan Rosen, published their 

famous paper asserting the incompleteness of quantum mechanics, “Can Quantum-Mechanical 

Description of Physical Reality Be Considered Complete?” (Einstein, Podolsky and Rosen, 1935; 

hereafter, EPR35). Bohr (1949) writes:   

 

 Due to the lucidity and apparently incontestable character of the argument, the 

paper of Einstein, Podolsky and Rosen created a stir among physicists and has played a 

large role in general philosophical discussion. 

 

In 1936, Bohr published his rejoinder (Bohr, 1936), also now famous. Bohr (1949) continues: 

 

It will be seen...that we are here [in EPR35] dealing with problems of just the same kind 

as those raised by Einstein in previous discussions, and in an article which appeared a 

few months later [Bohr, 1936], I tried to show that from the point of view of comple-

mentarity the apparent inconsistencies were completely removed. 
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Although much has been written and said since 1936, the debate between Einstein and Bohr that 

crystallized in the papers of 1935 and 1936 has ever since set the essential terms of discussion 

with regard to the foundational problems of quantum mechanics.  

 

By 1949 Einstein was almost alone among the most prominent physicists in rejecting Bohr’s 

view. Pauli (1949), with his characteristic directness, writes, 

 

The writer [Pauli] belongs to those physicists who believe that the new epistemological 

situation underlying quantum mechanics [Bohr’s concept of complementarity] is 

satisfactory, both from the standpoint of physics and from the broader standpoint of the 

conditions of human knowledge in general. He regrets that Einstein seems to have a 

different opinion on this situation; [...] 

 

Similar sentiments were expressed, with varying degrees of greater delicacy, by others among 

the great twentieth-century physicists who contributed to Schilpp’s (1949) collection of essays 

about, and by, Einstein. It is a commonplace today that time has granted Bohr a complete victory 

in this debate.
1 

 

 

In EPR35, Einstein, Podolsky and Rosen (EPR) argued that quantum mechanics must be 

incomplete. They objected to three characteristics of quantum mechanics that they claimed a 

complete physical theory would not have. Restating these in a convenient form, the three 

objections are: 

 

1. In quantum mechanics, given a pair of non-commuting observables and a system to be 

observed, at most one of the observables may possess a well-defined value before measurement. 

EPR insisted that a complete physical theory must require all observables to have precisely 

defined values at all times.  

 

2. In a complete physical theory, according to EPR, the value of any observable of a system must 

in principle be precisely predictable before measurement, given suitable auxiliary information 

such as boundary conditions, initial conditions, etc. Quantum mechanics does not provide this 

predictability; values to be observed are predicted only in a probabilistic sense. 

 

3. In a physical system consisting of separated parts, EPR asserted that no complete physical 

theory – indeed, “no reasonable theory" − could allow an observation on one part of the system 

to influence instantaneously a subsequent measurement on the other part of the system at an 

arbitrary distance. The formalism of quantum mechanics seems not only to allow this 

instantaneous action at a distance (“spooky action”), but positively to require it. 

 

                                                           
1
 However, for a view from a different angle, see the report by Sivasundaram and Nielsen (2016) of a survey of the 

beliefs and opinions of contemporary physicists concerning the foundational questions. Individual physicists are 
anything but clear in their own minds about these matters. 
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For a shorthand, we may refer to these objectionable (to Einstein) characteristics as, respectively, 

non-commuting observables, unpredictability and spooky action. 

 

At around this time, or somewhat earlier, Schrödinger coined the term “entanglement” to 

describe the phenomena, apparently suggested by the quantum theory, that gave rise to the 

complaints of EPR35 (Schrödinger, 1935). From the historical context it seems probable that 

Schrödinger intended the term to be an ironic and evocative expression of the riddle of quantum 

correlations, not a literal answer to the riddle. 

 

EPR35 contained a thought experiment. The thought experiment of EPR35 considered the 

position and momentum of “...two systems, I and II, which we permit to interact from the time 

t = 0 to t = T, after which time we suppose that there is no longer any interaction between the two 

parts.”  

 

Bohm (1951a, hereafter B51A; see Sec. 22-16, p. 614) recast the EPR thought experiment 

concerning position and momentum into a thought experiment concerning the spins of two spin-

½ particles originating as a single system with zero total spin (the singlet state
2
), which are then 

separated in such a way that the two parts can move off to a significant distance from each other. 

As an example of such a system, Bohm (see the next section) uses an unspecified molecule that 

disintegrates into two parts through some process that does not change the total angular 

momentum of the system.  

 

Bohm wrote that the reason he recast the EPR thought experiment concerning position and 

momentum into a thought experiment concerning spin that would be “conceptually equivalent” 

was because it would be “considerably easier to treat mathematically”, as well as probably easier 

to realize physically at some time in the future. “Unfortunately,” Bohm wrote, “such an 

experiment is still far beyond present techniques, but it is quite possible that it could someday be 

carried out” (B51A, Sec. 22-19, p. 623). The principal reason why Bohm felt that the recast 

thought experiment would be both easier to discuss and easier eventually to realize was that the 

recasting of the experiment turned a problem of continuous observables into a problem of 

discrete observables.  In an appendix to a later paper, Bohm and Aharonov (1957) explain in 

greater detail why the original position and momentum experiment of EPR35 would be, in 

principle, extremely difficult to accomplish. 

   

In his book, Bohm used the recast thought experiment to show that quantum-mechanical theory 

could not allow the separated particles to take on definite spin values prior to the measurement of 

their spins, i.e., that such an assumption would lead to an inconsistency in the theory. This was 

the principal purpose of his discussion. Although allowing that it could not be definitively 

declared to be impossible, Bohm concluded that it was extremely unlikely that a theory of 

“hidden variables” (i.e., as-yet unknown properties and processes
3
) that could render the values 

                                                           
2
 For a brief review of the singlet and triplet states, see Appendix 1. 

3
 More expansively, “hidden variables” are hypothetical, currently unknown properties or processes that uniquely 

determine the selection, when an observation is made, of a particular eigenvalue as the outcome of the 
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of non-commuting observables to be all well-defined prior to any measurement would ever be 

found, because, he said, it would require quantum mechanics to be wrong. Even some seventy 

years ago this was considered to be an exceedingly unlikely prospect. Bohm touched on the topic 

of hidden variables several times in the course of a long book (B51A), but neither made nor 

discussed any conceptual distinction between local and non-local hidden variables. 

 

Bohm and Aharonov (1957) proposed that the polarizations of a pair of correlated photons could 

be used experimentally as a conceptually equivalent substitute for the spins of a pair of spin-½ 

particles as originally envisaged in the thought experiment of B51A. Bohm and Aharonov 

discussed an earlier experiment (Wu and Shaknov, 1950) conducted for the purpose of studying 

photon correlation. They showed that the experiment of Wu and Shaknov could be recognized 

retrospectively as a fortuitous realization of the Bohm thought experiment, and that, moreover, 

its results conformed to quantum-theoretical predictions but did not conform to some specific 

alternative hypotheses.  

 

Curiously, notwithstanding his argument in B51A against the likelihood that any hidden variable 

theory could exist in conformity with quantum mechanics, Bohm (1951b, 1951c) proposed a 

hidden-variable theory. Although Bohm’s (1951b, 1951c) “suggested interpretation” of quantum 

mechanics has not been widely accepted
4
, research, analysis and discussion of his approach 

continue.
5
 As these two papers of Bohm do not discuss spin, they are tangential to the present 

article and will not be further discussed here.  

 

B64 (reprinted in Bell,1987) analyzed Bohm’s thought experiment. Using a certain formulation 

to describe the hypothetical presence of local hidden variables in a Bohm-like experiment, B64 

derived an inequality, now known as Bell’s Inequality. The proposition in B64 is that the 

existence of local hidden variables would imply that the results of the Bohm experiment should 

satisfy Bell’s Inequality; and that if the inequality is not satisfied by experiment, then local 

hidden variables must not exist. A corollary, about which Bell is explicit, is that if local hidden 

variables do not exist, then spooky action must obtain. 

  

The derivation of Bell’s Inequality is surprisingly, even shockingly, brief and simple. After the 

derivation, B64 shows by a very simple counter-example that the quantum theoretical predictions 

of the results of the Bohm experiment do not in general satisfy Bell’s Inequality. Local hidden 

variables are thus, according to B64, proven to be incompatible with the quantum theory of the 

Bohm experiment, and by implication with quantum mechanics in general. This is the gist of 

what is now called Bell’s Theorem. 

                                                                                                                                                                                           
observation, when, prior to the observation, the state vector of the system offered two or more eigenvalues as 
possible outcomes. For systems with degenerate eigenvalues, “the outcome” is extended to include not only the 
eigenvalue observed but also the eigenstate in which the system is left after the observation. Hidden variables 
acting only in the spatial vicinity of the observation are commonly referred to as “local hidden variables”.  
4
 It is attributed to Wolfgang Pauli to have described Bohm’s “suggested interpretation” as “a check that cannot be 

cashed.” 
5
 For example, Detlef Dürr and Stefan Teuffel, Bohmian Mechanics: The Physics and Mathematics of Quantum 

Theory, Springer-Verlag, 2009. 
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B64 stimulated new interest in the thought experiment of B51A, in particular in the prospect of 

putting quantum mechanics to rigorous experimental tests to see if the results of experiments 

purposely designed
6
 to realize the Bohm thought experiment would conform to quantum-

mechanical predictions and thus, according to B64, rule out local hidden variables. Clauser, 

Horne, Shimony and Holt (1969) derived directly from Bell’s Inequality a straightforward 

extension, now known as the CHSH Inequality. The CHSH Inequality is more suitable than the 

original Bell’s Inequality for application under realistic experimental conditions, where there is 

always some noise or error in the observations. In the same paper CHSH described a proposed 

experiment. 

 

Photon correlation experiments seeking to realize the Bohm thought experiment ever more 

rigorously then followed. These used Bell’s Theorem and the CHSH Inequality to explore what 

had come to be called the “EPR paradox”
7
. In the decades that followed the publication of B64, 

experiments were performed by Clauser and his colleagues (e.g., Freedman and Clauser, 1972); 

by Aspect and his colleagues (e.g., Aspect, Grangier and Roger, 1981); by Zeilinger and his 

colleagues (e.g, Weihs et al., 1998); and by others as well. All of these experiments were 

recognized as tours de force for the experimental technology of the respective years in which 

they were performed. The experiments, using the polarizations of pairs of photons, tested and 

verified the predictions of quantum theory for realizations of the Bohm experiment under 

increasingly rigorous experimental conditions.  

 

Today’s textbook orthodoxy (e.g., Griffiths, 2005) is that these experiments are verifications of 

Bell’s Theorem, namely, the proposition that local hidden variables are incompatible with 

quantum mechanics and that therefore non-locality – spooky action – must be accepted as a 

feature of reality. There is also a large literature extending or considering the further implications 

of Bell’s Theorem; for example, Greenberger, Holt, Shimony and Zeilinger (1990), Mermin 

(1990), Hemmick and Shakur (2018). 

 

The ascent of Bell’s Theorem to orthodoxy was not immediate. Howard and Ramirez (2019) 

recount the story of the quasi-journal Epistemological Letters, which was privately published and 

circulated from 1973 to 1984, during a period in which, as Howard and Ramirez describe it, 

study of the foundations of quantum mechanics, especially studies motivated by an interest in the 

implications of Bell’s Theorem, did not find a forum in the regular physics journals, at least not 

in the United States. 

 

Bell himself was never satisfied with the conclusions of his own famous paper. Reinhold 

Bertlmann, who was a close friend and colleague of Bell at CERN, the European Center for 

                                                           
6
 That is to say, unlike the fortuitous realization by Wu and Shaknov (1950), discussed by Bohm and Aharonov 

(1957). 
7
 EPR do not use the word “paradox”, nor does Bohr (1936) or Furry (1936) in their respective rejoinders to EPR35. 

However, Bohr (1936) does use the phrase “apparent contradiction”, which is a synonym for “paradox.” EPR, of 
course, did not believe that the contradiction was merely apparent. 
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Nuclear Research, has written a short memoir of Bell (Bertlmann, 2015). In this memoir 

Bertlmann discusses Bell’s feeling about the conclusions of B64. As Bertlmann describes it, 

Bell’s view was that the apparent incompatibility of relativity with the spooky action required by 

B64 seemed only to leave a conundrum.  

 

Despite the rise of Bell’s Theorem to current orthodoxy, the troublesome issues associated with 

nonlocality remain a topic of active interest, and there is a small counter-current of critique of 

B64. Some examples (by no means an exhaustive list) are Sanctuary (2006), Christian (2010, 

2018), Kracklauer (2015), Muchowski (2020). 

 

At the present time, as a result of interest in potential applications of quantum entanglement in 

computing, communication and cryptography, the number of experiments demonstrating, 

exploring or exploiting aspects of entanglement is exploding. One can get a sense of the extent of 

this theoretical and experimental effort from the review by Flamini, Spagnolo and Sciarrino 

(2018) of quantum information processing using optical photons. Nearly all of the work 

discussed in their review, which contains over 600 references, depends in one way or another on 

entanglement. Moreover, as discussed by Flamini et al., in addition to the optical photonics 

covered in their review, work is also being done in the use for quantum information processing 

of atomic and nuclear spins, electrons, solid state devices, Josephson junctions and 

superconducting devices.  

 

The purpose of this article 

 

It is the purpose of this article to show that Bell’s Theorem is not a proof of spooky action 

because it contains mathematical and logical errors, and that even if it did not contain errors, it 

does not cover all important classes of cases. It is not the purpose of this article to answer any of 

the foundational questions of quantum mechanics.   

 

It is impossible to discuss Bell’s Theorem without reference to both spooky action and hidden 

variables. It is important to be clear that of those two closely related but not identical issues, it is 

the conclusions of B64 with respect to spooky action which principally motivate this article. 

 

There may be good reasons to accept spooky action. Indeed, it seems from the historical context 

that many physicists (though not Einstein) did accept it – though not explicitly – long before the 

publication of B64. They did so simply because of the great experimental success of the tightly 

integrated linear algebraic framework (“the formalism”) of quantum mechanics, which seems so 

strongly to suggest non-locality, though not to prove it. B64 seemed to offer a simple proof. 

However, it is not proof. 

 

*The genesis of this article 

In approaching the arguments of this article, it may be helpful, although it is not essential, for 

readers to be aware of what my intellectual point of departure for this work was. 
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Probably most people with significant academic training in the physical sciences or related fields 

are familiar with the process of encountering a new mathematical concept, and then, in the 

course of studying it in school or applying it in practice, developing a “feeling” for how it works 

mathematically and a “sense” of why it is true. This feeling becomes a kind of unitary grasp of 

the whole concept. Such a grasp transcends the process of mathematical demonstration. 

 

This mental representation, which may or may not correspond rigorously to the mathematics, 

generally corresponds to it well enough to guide an intuition that will successfully lead to more 

carefully formulated expressions and analyses. In classical branches of physics, especially in 

mechanics, the mathematical feeling for the concept is closely coupled to natural physical 

intuition. However, even in branches of study where natural physical intuition is somewhat 

decoupled from the mathematics, such as in quantum mechanics, one still develops a feeling for 

the relevant mathematical framework. In the particular case of quantum mechanics, this is a 

feeling for its linear algebraic framework, its “formalism.” 

 

Much of the power and influence of Bell’s Theorem is due to the apparently simple algebra of 

the derivation of Bell’s Inequality in B64. But despite its apparent simplicity, I found that, try as 

I might, I could get no feeling at all, no sense, for how and why Bell’s Theorem worked. 

 

And thus this journey began. Its original intended destination was a conceptual grasp, a feeling, 

for why this apparently simple yet far-reaching algebraic result works. In the event, the actual 

destination was not that. Rather, it was the conclusion that the reason I could get no grasp, no 

feeling, for why Bell’s Theorem works, is that in fact, it doesn’t.  

 

Outline 

 

The remainder of this article contains sections under the following headings: 

 

1*. Description of the Bohm thought experiment, from B51A. 

2*. The derivation of Bell’s Inequality, from B64. 

3. Bell’s Inequality is the result of an inadmissible substitution. 

4. Bell’s Inequality, were its derivation otherwise valid, would apply only to the case of non-

local hidden variables, not local ones. 

5. Bell’s Theorem, valid or not, addresses only deterministic local hidden variables. 

6. The peculiar role of experiment. 

 

Appendices 

 

There are four appendices. Appendices 1-3 provide background information for the main 

argument of the article. Appendix 4 briefly discusses a closely related topic. 

 

Appendix 1*. A brief review of the singlet and triplet states. 

Appendix 2*. A sketch of the proof that  𝑃(𝐮, 𝐯) = −𝐮 ∙ 𝐯 .  
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Appendix 3*. The derivation of Bell’s Inequality, written in a more transparent notation. 

Appendix 4. On “combinatorial” derivations of Bell’s Inequality. 

 

1*. Description of the Bohm thought experiment 

 

The best way to describe the Bohm thought experiment is simply to quote B51A (Chapter 22, 

Sec. 16). 

 

“16. The Hypothetical Experiment of Einstein, Rosen and Podolsky
8
. We shall now 

describe the hypothetical experiment of Einstein, Rosen and Podolsky. We have modified 

the experiment somewhat, but the form is conceptually equivalent to that suggested by 

them, and considerably easier to treat mathematically. 

 Suppose that we have a molecule containing two atoms in a state in which the 

total spin is zero and that the spin of each atom is ħ/2.
9
 Roughly speaking, this means that 

the spin of each particle points in a direction exactly opposite to that of the other, insofar 

as the spin may be said to have any definite direction at all. Now suppose that the 

molecule is disintegrated by some process that does not change the total angular 

momentum. The two atoms will begin to separate and will soon cease to interact 

appreciably. Their combined spin angular momentum, however, remains equal to zero, 

because by hypothesis, no torques have acted on the system. 

 [A paragraph is omitted here that describes what the classical analysis of this 

situation would be.] 

 Let us now consider how this experiment is to be described in the quantum 

theory. Here, the investigator can measure either the x, y or z component of the spin of 

particle No. 1, but not more than one of these components, in any one experiment. 

Nevertheless, it still turns out as we shall see that whichever component is measured, the 

results are correlated, so that if the same component of the spin of atom No. 2 is 

measured, it will always turn out to have the opposite value.” 

 

The case referred to in the last sentence of the above quote from Bohm (i.e., “...if the same 

component of the spin of atom No. 2 is measured...”) corresponds to the special case in the next 

section of a = b. 

 

B51A goes on to further discuss the recast thought experiment and its relation to the questions 

discussed by EPR35. 

 

Figure 1 is a schematic diagram of the Bohm thought experiment. 

 

                                                           
8
 For reasons that are unknown to me, in B51A, as well as in Bohm and Aharonov (1957), the order of names in 

Einstein, Podolsky and Rosen, a.k.a. EPR, is consistently rearranged as Einstein, Rosen and Podolsky, or ERP. I quote 
Bohm accurately here but prefer not to use the insertion “[sic]”, whence this explanatory footnote.  
9
 This is the singlet state; Appendix 1 provides a brief review of it. 
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Figure 1. Schematic diagram of the Bohm thought experiment. Particles 1 and 2 are spin-½ particles in 

the singlet state. They move apart toward spin detectors A and B. Unit vectors a and b are the axes 

along which the detectors will measure the spins of the respective particles. 

 

2*. The derivation of Bell’s Inequality, as written in B64
10

 

 

In this section a reprise of the derivation of Bell’s Inequality is presented. In this section, no 

critique will accompany the presentation of the derivation; that will be offered later, in 

subsequent sections. This reprise is necessary because we will examine certain parts of the 

derivation in detail. Such detailed examination would be very awkward and inconvenient if it 

were done entirely with reference to the separate, external text of B64. 

 

B64 defines the symbol A(n,) to represent the deterministic result of a measurement by a 

detector, to be called here A, which is imagined to be, for example, a Stern-Gerlach apparatus 

oriented along unit vector n, while a similar measurement by a detector B is represented by the 

symbol B(n,). The possible values of A and B are ± 1, representing, respectively, spin-up and 

spin-down. The symbol  represents a hidden variable. Now follows an extended quotation from 

B64, with some ellipses. However, the equation numbers that appear are my own, not those of 

B64. 

 

[Begin quote] 

 

The result A...is...determined by a and , and the result B is determined by b and and 

 

                                                           
10

 The way in which B64 uses the symbols A, B, a, b and c can be very confusing (A vs. a, B vs. b, c as the alternate 
setting of b, etc). This is especially so any time that one tries to talk about the paper, but it also can be confusing 
even when one tries for the first time to read or think about the paper. Appendix 3 provides the same derivation 
using a less confusing set of symbols. 
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𝐴(𝐚, 𝜆) =  ±1, 𝐵(𝐛, 𝜆) =  ±1   .     (1) 

 

The vital assumption [2]
11

 is that the result B for particle 2 does not depend on the setting 

a, of the magnet for particle 1, nor A on b. 

 

If 𝜌(𝜆) is the probability distribution of  then the expectation value of the product of the 

two components 1 • a and 2 • b
12

 is  

𝑃(𝐚, 𝐛) = ∫ 𝑑𝜆 𝜌(𝜆)  𝐴(𝐚, 𝜆)𝐵(𝐛, 𝜆)  .     (2) 

 

This should equal the quantum-mechanical expectation value, which for the singlet state 

is
13

  

 

< 𝛔1 • 𝐚   𝛔2 • 𝐛 > =  − 𝐚 • 𝐛  .     (3) 

 

But it will be shown that this is not possible. 

 

Some might prefer a formulation in which the hidden variables fall into two sets, with A 

dependent on one and B dependent on the other; this possibility is contained in the above, 

since  stands for any number of variables and the dependence thereon of A and B are 

unrestricted. 

 

There is no difficulty in reproducing, in the form (2), the only features of (3) 

commonly used in verbal discussions of this problem: 

 

𝑃(𝐚, 𝐚) =  −𝑃(𝐚, −𝐚) =  −1     (4a) 

𝑃(𝐚, 𝐛) = 0  if  𝐚 • 𝐛 = 0     (4b) 

 

[...] Because  is a normalized probability distribution,  

 

∫ 𝑑𝜆 𝜌(𝜆) = 1     (5) 

 

and because of the properties (1), P in (2) cannot be less than −1. It can reach −1 at a = b 

only if  

 

                                                           
11

 This “[2]” is a reference by B64 to Einstein (1949). It is essential here to understand that Einstein did not doubt 
the statistical inter-dependence of distantly separated results in quantum-mechanical systems, of which the Bohm 
experiment on the singlet state is one example. What Einstein rejected was a direct, instantaneous causal 
dependence of one measurement upon the results of the other, i.e., spooky action. What Einstein insisted upon 
was that there must be some as-yet unknown physics which would render such instantaneous causal dependence 
logically unnecessary. Among other writings by Einstein, the essay of Einstein (1949) from which B64 quotes makes 
it very evident that this was Einstein’s view. What the schema of B64 attempts to do is, among other things, to 

consider unknown hidden variablesas the hypothetical mediators of the correlations between the detector 
results, and whether it is possible that such mediators could render spooky action logically unnecessary.  
12

  is the three-dimensional Pauli spin operator, ix + jy + kz  
13

 Appendix 2 provides a sketch of the derivation of this quantum-mechanical expectation value. 
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𝐴(𝐚, 𝜆) =  −𝐵(𝐚, 𝜆)    (6) 

 

except at a set of points  of zero probability. Assuming this, (2) can be rewritten 

 

  

𝑃(𝐚, 𝐛) = − ∫ 𝑑𝜆 𝜌(𝜆)  𝐴(𝐚, 𝜆) 𝐴(𝐛, 𝜆)  .     (7) 

 

It follows that [if] c is another unit vector 

 

 

𝑃(𝐚, 𝐛) −  𝑃(𝐚, 𝐜) =  − ∫ 𝑑𝜆 𝜌(𝜆) [ 𝐴(𝐚, 𝜆)𝐴(𝐛, 𝜆) − 𝐴(𝐚, 𝜆)𝐴(𝐜, 𝜆)]     (8a) 

                                        = ∫ 𝑑𝜆 𝜌(𝜆) 𝐴(𝐚, 𝜆)𝐴(𝐛, 𝜆)[𝐴(𝐛, 𝜆)𝐴(𝐜, 𝜆) − 1]    (8b) 

 

using (1), whence 

 

| 𝑃(𝐚, 𝐛) −  𝑃(𝐚, 𝐜)| ≤ ∫ 𝑑𝜆 𝜌(𝜆) [1 −  𝐴(𝐛, 𝜆)𝐴(𝐜, 𝜆)]  .     (9) 

 

The second term on the right is P(b, c), whence  

 

1 + 𝑃(𝐛, 𝐜)  ≥ | 𝑃(𝐚, 𝐛) −  𝑃(𝐚, 𝐜) | .     (10)     
 

[End quote.] 

 

Equation (10) is Bell’s Inequality. 

 

In B64 there follows a short argument that ends in a counter-example to (10), thus showing that 

(10) is inconsistent with the quantum-theoretical expectation value for P, Equation (3). The 

counter-example consists of three unit vectors a, b and c all lying in a plane. The unit vectors a 

and c are perpendicular to each other, while b lies midway between them, that is, 45° from each 

of them. Then the quantum-mechanical expectation values would be 

 

𝑃(𝐚, 𝐛) = −𝐚 • 𝐛 = −0.707            (11a) 

𝑃(𝐚, 𝐜) =  −𝐚 • 𝐜 =        0                 (11b) 

𝑃(𝐛, 𝐜) =  −𝐛 • 𝐜 =  −0.707           (11c) 

 

which is inconsistent with Bell’s Inequality (10): 

 

1 + (−0.707) = 0.293 ≱ | −0.707 − 0 |  = 0.707    (12) 
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It is thus ostensibly proven that inserting local hidden variables  into a quantum-mechanical 

calculation of the expectation value of a certain observable of the Bohm thought experiment 

leads to a contradiction with quantum mechanics. 

 

3. Bell’s Inequality is the result of an inadmissible substitution. 

 

The derivation of Bell’s Inequality, Equation (10), depends critically upon substituting Equation 

(6) into Equation (2) to obtain Equation (7). However, Equation (6) is deduced in the first place 

by substituting the equation P(a, a) = −1 from Equations (4a) into Equation (2). Equation (6) 

thus holds only for cases covered by the first of Equations (4a), i.e., P(a, a) = −1. Therefore, we 

may not use Equation (7) in cases for which Equation (6) does not hold, i.e., for cases in which 

𝐚 ≠ 𝐛. It follows that for b ≠ c, the second term on the right-hand side of (9) is not equal to  

P(b, c) (Equation [2]); and thus Equation (10), Bell’s Inequality, is not derived for general a, b 

and c, only for the case a = b = c.
 14

 The inadmissible use of Equation (7) for cases excluded by 

its derivation (𝐚 ≠ 𝐛) is the ultimate source of the contradiction between Bell’s Inequality and 

the quantum theory of the Bohm experiment. The counter-example, Equations (11) and (12), is 

drawn from the set of cases (𝐚 ≠ 𝐛) that are not covered by the derivation. It is thus no surprise 

that it contradicts Equation (10). 

 

This becomes more clear when we write Equations (1) and (6) in the following form, reflecting 

the quantum theory of the singlet state. (Single primes are used here in equation numbers to 

indicate correspondence, albeit with a difference, to similarly numbered equations in Section 2 

above.) 

 

  𝐴 = 𝐵                                                when    𝐚 ⋅ 𝐛 =  −1    (1a′) 

  𝐴 = −𝐵                                             when    𝐚 ⋅ 𝐛 =     1    (1b′) 

  𝐴 = 𝐵  or15  𝐴 = −𝐵                      when   |𝐚 ⋅ 𝐛| ≠    1    (1c′).
16,17

 

                                                           
14

 The matter of what cases are actually covered by Equation (10) is rather tangled. Untangling it is a distraction, 
and so it is relegated here to a footnote. Equation (6) is derived by using P(a, a) = −1 from Equation (4a). Thus, as 
previously noted, Equation (7) is explicitly derived in B64 only for the case of a = b (indeed, the sentence in which 
Equation [6] is embedded says as much). Thus Equation (10), Bell’s Inequality, is in turn also explicitly derived only 
for the case of a = b. It is not difficult to use P(a, −a) = 1, also from Equations (4a), to show that for the case of a = 

−b,  it follows that A(a, ) = B(−a, ); and from thence to derive Bell’s Inequality, Equation (10),  along a path that 
does not begin with Equation (7); rather, the path begins with a variant of (7), one which lacks the minus sign 
before the integral. It is only application of the absolute value operator which brings the two paths together at the 
end to yield (10) for both cases. We forego providing the second derivation here; suffice it to note that substitution 
easily shows that Bell’s Inequality holds for the three cases a = b = c, a = −b = c, and a = b = −c, though it is not 
derived in B64 for the latter two relations. That Equation (10) does not hold for general a, b, and c is the subject of 
this section.   
15

 This is an exclusive “or”. We know very little about A and B, but they are clearly intended in B64 to be single-
valued functions of their arguments. 
16

 From Equations (1a') and (1b') it may be observed that A and B are not functions representing solely the 
detectors. Rather, they represent some amalgam of the properties of the detectors with those of the particles, 
thus yielding the observation result.  
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Restating the matter through the clear lens of Equations (1′):  Bell’s Inequality is derived in B64 

only from (1b′) and thus, as derived, applies only in that case. As discussed in footnote 14, Bell’s 

Inequality can be derived also, through a somewhat different path, from (1a′). Bell’s Inequality is 

not derived in B64, and cannot be derived at all, from (1c′), which is the most general case. The 

absence of (1c′) from the derivation is the source of the contradiction between Bell’s Inequality 

and the quantum theory of the Bohm experiment. The counter-example of Equations (11) and 

(12) is drawn from (1c′), for which Bell’s Inequality was not derived. The use of Equation (10) 

beyond the assumptions of its derivation is the first of the mathematical errors referred to in the 

abstract. 

 

It is instructive to re-perform the derivation of Bell’s Inequality, this time without substituting 

(6) into (2), i.e., without being restricted to the cases of Equations (1a′) and (1b′). We begin with 

the original Equation (2) and work the subsequent algebra explicitly:  

 

𝑃(𝐚, 𝐛) = ∫ 𝑑𝜆 𝜌(𝜆)  𝐴(𝐚, 𝜆) 𝐵(𝐛, 𝜆)  .     (2) 

 

𝑃(𝐚, 𝐛) −  𝑃(𝐚, 𝐜) =  ∫ 𝑑𝜆 𝜌(𝜆) [ 𝐴(𝐚, 𝜆)𝐵(𝐛, 𝜆) − 𝐴(𝐚, 𝜆)𝐵(𝐜, 𝜆)].     (8a′) 

 

    𝑃(𝐚, 𝐛) −  𝑃(𝐚, 𝐜)  = ∫ 𝑑𝜆 𝜌(𝜆) 𝐴(𝐚, 𝜆)𝐵(𝐛, 𝜆) [1 −  
𝐴(𝐚, 𝜆)𝐵(𝐜, 𝜆)

𝐴(𝐚, 𝜆)𝐵(𝐛, 𝜆)
]   .   

 

      𝑃(𝐚, 𝐛) −  𝑃(𝐚, 𝐜)  = ∫ 𝑑𝜆 𝜌(𝜆) 𝐴(𝐚, 𝜆)𝐵(𝐛, 𝜆) [1 −  
𝐵(𝐜, 𝜆)

𝐵(𝐛, 𝜆)
]   .  

 

      𝑃(𝐚, 𝐛) −  𝑃(𝐚, 𝐜)  = ∫ 𝑑𝜆 𝜌(𝜆) 𝐴(𝐚, 𝜆)𝐵(𝐛, 𝜆)[1 −  𝐵(𝐛, 𝜆)𝐵(𝐜, 𝜆)]   .  (8b′) 

 

| 𝑃(𝐚, 𝐛) −  𝑃(𝐚, 𝐜)| ≤ ∫ 𝑑𝜆 𝜌(𝜆) |1 −  𝐵(𝐛, 𝜆)𝐵(𝐜, 𝜆)|  .  (8c′)   

 

The expression inside the absolute value operator on the right-hand side of (8c′) is always non-

negative; thus 

 

| 𝑃(𝐚, 𝐛) −  𝑃(𝐚, 𝐜)| ≤ ∫ 𝑑𝜆 𝜌(𝜆) [1 −  𝐵(𝐛, 𝜆)𝐵(𝐜, 𝜆)]  .   (9′)      

 

                                                                                                                                                                                           
17

 The reference in B64 to “the only features of [(3)] commonly used in verbal discussions of this problem” is an 
arbitrary restriction. The feature of (3) expressed in Equation (1c') is as well-known, and as much of the essence of 
the problem, as those expressed in (1a') and (1b').  
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It is essential to observe here that Equation (9′) is not the same as (9), despite its apparent 

similarity. In (9), the symbol A represents a function that characterizes the result in either 

detector. In (9′) the symbols A and B refer to the results obtained in the A and B detectors 

respectively. That is to say, by not inappropriately using (6), Equation (9′) preserves the separate 

identity of each detector and covers all three of the cases of Equations (1′). 

 

Rearranging (9′) into a form convenient for comparison with Equation (10), Bell’s Inequality, we 

obtain 

 

1 − ∫ 𝑑𝜆 𝜌(𝜆) 𝐵(𝐛, 𝜆)𝐵(𝐜, 𝜆)  ≥ | 𝑃(𝐚, 𝐛) −  𝑃(𝐚, 𝐜)| .    (10′)    

 

What is the second term on the left side of (10′), the integral? It evidently is not P(b, c) 

(Equation [2]), because it involves the B detector alone. It is the correlation, as a function of of 

the results of two hypothetical unequal settings of the B detector



These two unequal settings of the B detector are cases that cannot both be realized in the 

observation of a single pair of particles. Because the unequal settings of detector B cannot be 

realized in the observation of a single pair of particles, there are no experiments that could be 

carried out to make a direct empirical estimate of what the value of the integral on the left side of 

(10′) might be. 
 

Moreover, we have no specific ideas concerning the general functional dependence of B(n, ) on 

, and therefore we have no way to calculate a theoretical (i.e., predicted) value for the integral 

on the left-hand side of (10′).  
 

Thus, Equation (10′), the inequality that is derived for general a, b and c without the restrictive 

Equation (6), cannot be compared either to experiment or to theory.  

 

Christian [2018, Sections 4.1 and 4.2], by a different path of analysis, has demonstrated a similar 

point with respect to the CHSH form of Bell’s Inequality. The CHSH Inequality is derived 

similarly to Bell’s Inequality, but without the use of Equation (6).  

 

To work Equation (8c′) into a form that can be compared to theory and experiment for general 

a, b and c, the only thing we can do is to recognize that the expression inside the absolute value 

sign on the right-hand side of (8c′) is bounded above by 2. Equation (8c′) then becomes 

 

| 𝑃(𝐚, 𝐛) −  𝑃(𝐚, 𝐜)| ≤ 2  .   (9a′)   
 

This result, (9a′), is obtained by carrying forward the basic schema of B64 but in an 

algebraically consistent manner. For general a, b and c, (9a′) is consistent with both the 

quantum theory of the Bohm experiment and the experimental results. Of course, Equation (9a′) 

is not proof, or even evidence, that hidden variables  exist.    
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4. Bell’s Inequality, were its derivation otherwise valid, would apply only to the case of non-

local hidden variables, not local ones. 

Let us for the moment set aside the error described in Section 3 above and continue our analysis 

of Bell’s Inequality as if it were valid for all three cases of Equations (1′). In doing so we shall 

find that there is another error in Bell’s Theorem, independent of the one discussed in the 

previous section. 

 

In the short paragraph following Equation (3), Bell writes: 

 

Some might prefer a formulation in which the hidden variables fall into two sets, with A 

dependent on one and B dependent on the other; this possibility is contained in the above 

[Equation (2)], since  stands for any number of variables and the dependence thereon of 

A and B are unrestricted. 

 

Let us try the formulation which “some might prefer,” to see what effect it has on the result. 

 

We begin with a modification of Equation (2). (In this section double primes are used to indicate 

correspondence, albeit with a difference, to similarly numbered earlier equations.) 

 

𝑃(𝐚, 𝐛) = ∫ ∫  𝜌(𝜆1,  𝜆2)  𝐴(𝐚, 𝜆1)𝐵(𝐛, 𝜆2) 𝑑𝜆1 𝑑𝜆2  .     (2′′)18 

 

Here, we have assumed that the local hidden variable i is associated with the ith particle and not 

with the corresponding detector. This is the case of principal interest; however, later in this 

section we will also briefly consider the case in which the local hidden variable may be 

associated with the detector, or with both the particle and the detector. 

 

We must also modify Equation (6) to become (6′′): 

 

𝐴(𝐚, 𝜆1) =  −𝐵(𝐚, 𝜆2)  ,    (6′′) 

 

Inserting (6′′) in (2′′) in the manner of B64 leads to a modified version of Equation (7): 

 

𝑃(𝐚, 𝐛) =  − ∫ ∫  𝜌(𝜆1,  𝜆2)  𝐴(𝐚, 𝜆1)𝐴(𝐛, 𝜆2) 𝑑𝜆1 𝑑𝜆2  .     (7′′) 

 

We now follow the algebraic steps of Equations (8a) and (8b) in Section 1 above, and derive an 

equation corresponding to Equation (9): 

 

                                                           
18

 The density function (1, 2) in Equation (2'') includes the special case of  = 1(1)2(2). 
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| 𝑃(𝐚, 𝐛) −  𝑃(𝐚, 𝐜)| ≤ ∫ ∫ 𝜌(𝜆1,  𝜆2) 𝑑𝜆1 [1 −  𝐴(𝐛, 𝜆2)𝐴(𝐜, 𝜆2)]  𝑑𝜆2  .     (9′′) 

 

This equation may be simplified as 

 

| 𝑃(𝐚, 𝐛) −  𝑃(𝐚, 𝐜)| ≤ ∫ 𝜌(𝜆2) [1 −  𝐴(𝐛, 𝜆2)𝐴(𝐜, 𝜆2)] 𝑑𝜆2 .     (9a′′ ) 

Equation (9a′′) is then rearranged for easy comparison to Equation (10) as   

 

1 − ∫ 𝜌(𝜆2) 𝐴(𝐛, 𝜆2)𝐴(𝐜, 𝜆2) 𝑑𝜆2  ≥ | 𝑃(𝐚, 𝐛) −  𝑃(𝐚, 𝐜)|  .     (10′′ ) 

 

Now we see that we have encountered a difficulty similar to that of the previous section, even 

though this time we have followed B64 and allowed the use of Equation (6′′) in (2′′) to create 

(7′′). The difficulty is that the second term on the left side of Equation (10′′) is not equal to 

P(b, c), Equation (2′′), because the integral is over2 only, not over1 and 2 together.  

 

There is no experiment that we can conduct in which the detector associated with particle 2 is to 

be simultaneously in two different orientations, b and c. Therefore, we can make no 

experimental estimate of the value of the integral that we can compare with the other terms. 

Also, we know nothing about the dependence of A on . Therefore, we cannot theoretically 

predict the value of the integral so that it can be compared to the other terms in (10′′). Thus we 

cannot compare (10′′) either to theory or to experiment.  

 

On the other hand, if there is only a single non-local, such that 𝜆1 = 𝜆2 = 𝜆, then (10′′) is 

reduced to (9), which becomes (10). Equation (10), Bell’s Inequality, can be and of course has 

been compared to both theory and experiment and famously matches neither.  

 

Thus we see that Equation (10), Bell’s Inequality, if it were otherwise consistent and were to be 

compared to theory and experiment, would exclude only hypothetical non-local hidden variables, 

where  is identically the same in the arguments of functions A and B. 

 

If we were to associate the local hidden variable with the detector instead of with the particle, or 

with both the detector and the particle, then A(c, would become A(c,or become some 

other similar expression for A(c) as a function of a more complicated set of arguments i. The 

impossibility of the comparison of the inequality (10′′) to either theory or experiment would not 

be relieved. 

 

What, then, of Bell’s assertion that  

 

“...a formulation in which the hidden variables fall into two sets, with A dependent on one 

and B dependent on the other...is contained in the above [Equation (2)], since stands for 

any number of variables and the dependence thereon of A and B are unrestricted”?  
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This assertion seems to amount to the suggestion that is to be understood as a vector  

 (1, 2)
19

; that A(n,) is to be understood in the sense of A(n,1, 2), and similarly for B; 

that, however, 2 is to be understood as an argument of A only in a purely formal sense, but not 

having any actual effect on A; while 1 is to be understood as a correspondingly purely formal 

argument of B, lacking any actual effect on B. That notational approach has resulted in confusion 

and error; this is the second of the mathematical errors referred to in the abstract. Those who 

might have preferred the more explicit formulation used in Equation (2′′) would have been right 

to do so.  

  

  

5. Bell’s Theorem, valid or not, addresses only deterministic local hidden variables. 

 

The formulation of the case of hidden variables used in B64, Equation (2), assumes deterministic 

hidden variables. That is to say, A(n, ) is a single-valued function of its arguments, and 

similarly for B(n, ). B64 does not address the case in which hypothetical local hidden variables 

do not deterministically yield the result of the observation, but rather contribute to the local 

generation of the local probability distribution from which the observation result is ultimately 

drawn. Given that the orthodox interpretation of quantum mechanics already holds that when 

more than one outcome is possible, the result of an observation is drawn randomly from a 

probability distribution, this would be a very conservative form for a hypothesis of local hidden 

variables to take.  

 

EPR would have rejected such a scenario, as violating both the first and the second of their 

requirements for a complete theory, namely, precisely defined values for all observables at all 

times, and predictability in principle. However, we are not required to adopt an all-or-nothing 

point of view with regard to EPR’s three objections. If we are prepared to consider the case in 

which unknown properties of the particles and/or the detectors, and unknown processes in the 

interactions of the particles with the detectors, influence the local probability distribution for the 

observation but do not uniquely determine the outcome, then even if Bell’s Inequality and its 

application to the Bohm experiment were algebraically consistent, it still would not be an airtight 

proof of spooky action, for the simple reason that it addresses only the deterministic scenario 

upon which Einstein insisted, and does not address non-deterministic scenarios. 

 

This last point should perhaps not be taken as a criticism of B64 itself, as the title of the paper 

suggests that it is intended only as a response to the three bundled objections of EPR35. 

However, whatever the paper’s original intention, it has come to be regarded as a definitive 

general proof of non-locality, not only as a proof of the inconsistency of quantum mechanics 

with the bundled three-part position taken by EPR (a position often referred to as “Einstein 

locality”). 

                                                           
19

 To be more precise, it is the suggestion that   = (1, 2, ..., N), where there may be any number N of 

components i . For our purposes, N=2 is sufficient. 
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6. The curious role of experiment 

 

“For those things which agree in negation alone, or in what they have not, in truth agree 

in nothing.”       Spinoza (1677) 

 

Experimental realizations of Bohm’s thought experiment have played a very important role in 

the acceptance of Bell’s Theorem. Bell’s Theorem and the experimental realizations are in 

“agreement” in the negative sense that the experimental results do not satisfy the CHSH 

Inequality. For this reason, the argument of Bell’s Theorem has been considered to be verified by 

experiment. 

 

This is a very forgiving position for a theoretical argument to be in, namely, to be considered 

correct for predicting not what will be observed, but rather what will fail to be observed. In this 

case, the prediction of what will fail to be observed benefits from the yet further forgiving 

characteristic of having been calculated from unspecified hypothetical variables and processes.  

 

Bell’s Theorem does indeed predict the right experimental result, namely, that Bell’s Inequality 

in the form of the CHSH Inequality predicts the wrong experimental result. However, it does so 

for wrong reasons, in particular, because of errors in the mathematical logic that carries its 

assumptions into its predictions. The “agreement” of Bell’s Theorem with experiment is no 

agreement at all. 

 

APPENDICES 

 

Appendix 1*. Brief review of the singlet and triplet states. 

 

Most quantum mechanics textbooks cover the material in this appendix. This appendix will 

loosely follow the notation used by Bohm in B51A, Section 17.9. (I say “loosely” because B51A 

does not use the Dirac notation.) 

 

Consider a pair of particles, each of spin ½. Consider the operator S12, the spin observable for 

this system: 

 

𝑺𝟏𝟐 = 𝑺𝟏 + 𝑺𝟐 =  
ℏ

2
(𝝈𝟏 +  𝝈2)  ,    (A1 − 1) 

 

where  is the three-dimensional Pauli spin operator, ix + jy + kz, and the operators with 

subscripts 1 and 2 operate only on particle 1 and particle 2, respectively. 

 

The four eigenvectors of S12z, the z component of S12, are  
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𝜓𝑎 = | + +>,     𝜓𝑏 = | + −>,     𝜓𝑐 = | − +>    and   𝜓𝑑 = | − −>    ,   (A1 − 2)20 

 

where the + and – signs correspond, respectively, to observations of spin-up and spin-down 

along the z axis, and the four eigenvectors correspond, respectively, to the eigenvalues ℏ, 0, 0 

and −ℏ for S12z . A linear combination of 𝜓𝑏 and  𝜓𝑐 is also an eigenvector of S12z corresponding 

to an eigenvalue of 0. 

 

We can also consider the operator S12
2
, which is 

 

𝑆12
2 = (𝑺𝟏 + 𝑺𝟐)𝟐 =  𝑆1

2 + 𝑆2
2 + 2𝑺𝟏 ⋅ 𝑺𝟐 =  

3

2
 ℏ2 +  2𝑺𝟏 ⋅ 𝑺𝟐       (A1 − 3) 

 

This operator, S12
2
, also has four eigenvectors. Two of them are identical to the eigenvectors 

given above for the operator S12z. These are 𝜓𝑎 and 𝜓𝑑 above, both corresponding to the 

eigenvalue for S12
2
 of 2ℏ2

. The other two eigenvectors of S12
2
 are   

 

𝜓1 =  
1

√2
(𝜓𝑏 + 𝜓𝑐)   and   𝜓2 =  

1

√2
(𝜓𝑏 − 𝜓𝑐)  .       (A1 − 4) 

 

The eigenvalue of S12
2 

associated with 𝜓1 is 2ℏ2
, while the eigenvalue associated with 𝜓2 is 0. 

 

Thus, 𝜓𝑎, 𝜓1, 𝜓2 and 𝜓𝑑 are all eigenvectors of both of the operators S12z and S12
2
. Eigenvectors 

𝜓𝑎, 𝜓𝑑, and 𝜓1 are referred to collectively as the triplet state, while 𝜓2 is called the singlet state. 

 

The states 𝜓𝑏 and 𝜓𝑐 are not eigenvectors of S12
2
. 

 

Eigenvector 𝜓2 is the subject of the Bohm experiment. In state 𝜓2, while S12z has a definite value 

of zero, neither of its two parts, S1z and S2z, has a definite value prior to measurement. When 

measured along the same direction (the z axis, in this particular case), these two spins of 

particles 1 and 2 will always be opposite to each other, as expressed in Equation (6), or Equation 

(1b'), but which spin result (up or down) will be observed in which detector cannot be specified 

in advance. 

 

Appendix 2*. A sketch of the proof that  𝑃(𝐮, 𝐯) = −𝐮 ∙ 𝐯 . 

 

Like Appendix 1, this appendix loosely follows the notation of B51A. To avoid confusion 

between the subscripts a, b, c, d of Appendix 1 and the unit vectors a, b and c of B64, in this 

appendix the unit vectors describing the settings of detectors A and B respectively are named u 

and v rather than a and b. 

                                                           
20

 The subscripts a, b, c and d are used in B51A, and thus in this appendix, to enumerate eigenstates. This use of a, 
b and c should not be confused with the a, b and c unit vectors of B64. There is no notational relation between 
them.  
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In bra-ket and operator notation, P (u, v) may be written as 

 

𝑃(𝐮, 𝐯) = < 𝜓2|(𝐮 ∙ 𝝈𝟏)(𝐯 ∙ 𝝈𝟐)|𝜓2 >   , (A2 − 1) 

 

where𝜓2is the singlet state, as discussed in Appendix 1, and 𝝈 is the three-dimensional Pauli 

spin operator, 𝐢𝜎𝑥 +  𝐣𝜎𝑦 +  𝐤𝜎𝑧. Here, 𝝈𝟏 operates on particle 1, while 𝝈𝟐 operates on particle 2. 

The two operators are transparent to each other. For a given pair of detector settings u and v, P is 

the expectation value of the product of the two spin results, where spin-up in each detector is 

assigned +1, and spin-down is assigned −1. Another way of saying this is that P is the average 

value of the product of the observed spins, divided by ℏ2/4. 

 

Implicitly performing the dot product operation within each operator, we can rewrite (A2−1) as 

 

𝑃(𝐮, 𝐯) = < 𝜓2|𝜎𝑢𝜎𝑣|𝜓2 >   , (A2 − 2) 

 

Recalling from (A1−4) above that 𝜓2 is a linear combination of 𝜓𝑏 and 𝜓𝑐, we expand (A2−2) 

as 

 

𝑃(𝐮, 𝐯) =  
1

2
(< 𝜓𝑏| − < 𝜓𝑐|) 𝜎𝑢𝜎𝑣 (|𝜓𝑏 > − |𝜓𝑐 >)   , (A2 − 2) 

 

which is further expanded as 

 

𝑃(𝐮, 𝐯) = 

 
1

2
 [ < 𝜓𝑏|𝜎𝑢𝜎𝑣|𝜓𝑏 > − < 𝜓𝑐|𝜎𝑢𝜎𝑣|𝜓𝑏 > − < 𝜓𝑏|𝜎𝑢𝜎𝑣|𝜓𝑐 > + < 𝜓𝑐|𝜎𝑢𝜎𝑣|𝜓𝑐 > ]  , 

(A2 − 3) 

 

Now it is convenient to introduce matrix forms for the operator 𝜎𝑢 and the singlet state 𝜓2. The 

matrix form for 𝜓2 (A1 − 4) is written as (B51A, Sec. 17.9, p. 399  ) 

 

𝜓2 =  
1

√2
 { (

1

0
) (

0

1
) −  (

0

1
) (

1

0
) }   , (A2 − 4) 

 

where the first term inside the curly braces represents  𝜓𝑏 = | + −>  while the second term 

represents  𝜓𝑐 = | − +>.  The operator 𝜎𝑢 is written in matrix form as 

 

 

𝜎𝑢 =  (
𝑢𝑧 𝑢𝑥 −  𝑖𝑢𝑦

𝑢𝑥 +  𝑖𝑢𝑦 −𝑢𝑧
)     (A2 − 5) 
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where 𝑢𝑥 , 𝑢𝑦 and 𝑢𝑧 are the three components of the unit vector u, and similarly for 𝜎𝑣 (see, e.g., 

B51A, p. 394, Equation [28]). 

 

We perform the evaluation beginning with the first term inside the square brackets on the left of 

Equation (A2−3). For the first term, we will carry out the evaluation in detail, so that the use of 

the notation will be fully illustrated. Recalling that each operator operates only on one particle, 

we have 

 

𝜎𝑢|𝜓𝑏 > =  𝜎𝑢 (
1

0
) =   (

𝑢𝑧

𝑢𝑥 +  𝑖𝑢𝑦
)    (A2 − 6a) 

 

and 

 

𝜎𝑣|𝜓𝑏 > =  𝜎𝑣 (
0

1
) =   (

𝑣𝑥 −  𝑖𝑣𝑦

−𝑣𝑧
)   .   (A2 − 6b) 

 

These are combined into a product as 

 

𝜎𝑢𝜎𝑣|𝜓𝑏 > =  𝜎𝑢 (
1

0
) 𝜎𝑣 (

0

1
) =   (

𝑢𝑧

𝑢𝑥 +  𝑖𝑢𝑦
) (

𝑣𝑥 −  𝑖𝑣𝑦

−𝑣𝑧
)    (A2 − 7) 

 

The bra < 𝜓𝑏| is applied as two row vectors: 

 

< 𝜓𝑏| 𝜎𝑢𝜎𝑣|𝜓𝑏 > =  
(1 0 )

(0 1)
𝜎𝑢 (

1

0
) 𝜎𝑣 (

0

1
) =   

(1 0 )

(0 1)
(

𝑢𝑧

𝑢𝑥 +  𝑖𝑢𝑦
) (

𝑣𝑥 −  𝑖𝑣𝑦

−𝑣𝑧
)    (A2 − 8) 

 

In the above expression, on the right-hand side, the top row vector multiplies the left column 

vector, the bottom row vector multiplies the right column vector, and the two resulting scalars 

are combined as a product. When this multiplication is carried out, we obtain 

 

  

< 𝜓𝑏| 𝜎𝑢𝜎𝑣|𝜓𝑏 > =  −𝑢𝑧𝑣𝑧   .   (A2 − 9)   

 

Applying the same method, the fourth term inside the square brackets of (A2−3) is evaluated as  

 

< 𝜓𝑐| 𝜎𝑢𝜎𝑣|𝜓𝑐 > =  −𝑢𝑧𝑣𝑧   .   (A2 − 10) 

 

The second term in the square brackets in (A2−3) is evaluated as 

 

− < 𝜓𝑐|𝜎𝑢𝜎𝑣|𝜓𝑏 > =  − (𝑢𝑥𝑣𝑥 + 𝑢𝑦𝑣𝑦 + 𝑖𝑢𝑦𝑣𝑥 − 𝑖𝑢𝑥𝑣𝑦)   .   (A2 − 11) 

 

The third term inside the square brackets in (A2−3) is the complex conjugate of the second term: 
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− < 𝜓𝑏|𝜎𝑢𝜎𝑣|𝜓𝑐 > =  − (𝑢𝑥𝑣𝑥 + 𝑢𝑦𝑣𝑦 − 𝑖𝑢𝑦𝑣𝑥 + 𝑖𝑢𝑥𝑣𝑦)  .  (A2 − 12) 

 

Inserting these four partial results, namely, (A2−9), (A2−10), (A2−11) and (A2−12), into 

(A2−3), we obtain 

 

𝑃(𝐮, 𝐯) =  − (𝑢𝑥𝑣𝑥 + 𝑢𝑦𝑣𝑦 + 𝑢𝑧𝑣𝑧)   ,    (A2 − 13) 

 

which we recognize as  

 

𝑃(𝐮, 𝐯) = −𝐮 ∙ 𝐯   .    (A2 − 14) 

 

 

Appendix 3*. The derivation of Bell’s Inequality, written in a more transparent notation 

 

This appendix contains the same derivation as that given in Section 2, except recast in what I 

hope is a less confusing notation.  

 

To make it easy to compare the contents of this appendix with Section 2, the language of Section 

2 is re-used with only a few changes. Please note that unlike in Section 2, in this appendix the 

indentation of the text from both margins signifies something less than a verbatim quote from 

B64. Also, in this appendix the footnotes of Section 2 have been dropped. The equation numbers 

in this appendix correspond to those of Section 2, distinguished only by the use of  

“A3−” (for Appendix 3) in the equation number. 

 

We begin by defining the symbol M1(n1,) to represent the result of a measurement by detector 

1 oriented along unit vector n1, while a similar measurement by detector 2 is represented by the 

symbol M2(n2,). The symbol  represents a local hidden variable.  

 

[Begin derivation] 

 

The result M1...is...determined by n1 and , and the result M2 is determined by n2 and 

and 

 

𝑀1(𝐧𝟏, 𝜆) =  ±1, 𝑀2(𝐧𝟐, 𝜆) =  ±1   .     (A3 − 1) 

 

The vital assumption is that the result M2 for particle 2 does not depend on the setting n1, 

of the magnet for particle 1, nor M1 on n2. 

 

If () is the probability distribution of  then the expectation value of the product of the 

two components 1 • n1 and 2 • n2 is  

 

𝑃(𝐧𝟏, 𝐧𝟐) = ∫ 𝑑𝜆 𝜌(𝜆) 𝑀1(𝐧𝟏, 𝜆)𝑀2(𝐧𝟐, 𝜆)  .     (A3 − 2) 
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This should equal the quantum-mechanical expectation value, which for the singlet state 

is  

 

< 𝛔1 • 𝐧𝟏   𝛔2 • 𝐧𝟐 > =  − 𝐧𝟏 • 𝐧𝟐  .     (A3 − 3) 

 

But it will be shown that this is not possible. 

 

Some might prefer a formulation in which the hidden variables fall into two sets, with M1 

dependent on one and M2 dependent on the other; this possibility is contained in the 

above, since  stands for any number of variables and the dependence thereon of M1 and 

M2 are unrestricted. 

 

 There is no difficulty in reproducing, in the form (A3−2), the only features of  

(A3−3) commonly used in verbal discussions of this problem: 

 

𝑃(𝐧, 𝐧) =  −𝑃(𝐧, −𝐧) =  −1     (A3 − 4a) 

 

where n is any unit vector, and  

 

𝑃(𝐧𝟏, 𝐧𝟐) = 0  if  𝐧𝟏 • 𝐧𝟐 = 0     (A3 − 4b) 

 

[...] Because  is a normalized probability distribution,  

 

∫ 𝑑𝜆 𝜌(𝜆) = 1     (A3 − 5) 

 

and because of the properties (A3−1), P in (A3−2) cannot be less than −1. It can reach −1 

at n1 = n2 = n only if  

 

𝑀1(𝐧, 𝜆) =  −𝑀2(𝐧, 𝜆)    (A3 − 6) 

 

except at a set of points  of zero probability. Assuming this, (A3−2) can be rewritten 

 

  

𝑃(𝐧𝟏, 𝐧𝟐) =  − ∫ 𝑑𝜆 𝜌(𝜆) 𝑀1(𝐧𝟏, 𝜆) 𝑀1(𝐧𝟐, 𝜆)  .     (A3 − 7) 

 

It follows that [if] n2' is another unit vector 

 

 

𝑃(𝐧𝟏, 𝐧𝟐) −  𝑃(𝐧𝟏, 𝐧𝟐′) 

=  − ∫ 𝑑𝜆 𝜌(𝜆) [ 𝑀1(𝐧𝟏, 𝜆) 𝑀1(𝐧𝟐, 𝜆) − 𝑀1(𝐧𝟏, 𝜆) 𝑀1(𝐧𝟐′, 𝜆)]    (A3 − 8a) 

                        = ∫ 𝑑𝜆 𝜌(𝜆) 𝑀1(𝐧𝟏, 𝜆) 𝑀1(𝐧𝟐, 𝜆)[𝑀1(𝐧𝟏, 𝜆) 𝑀1(𝐧𝟐′, 𝜆) − 1]       (A3 − 8b) 
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using (A3−1), whence  

 

| 𝑃(𝐧𝟏, 𝐧𝟐) −  𝑃(𝐧𝟏, 𝐧𝟐′)| ≤ ∫ 𝑑𝜆 𝜌(𝜆) [1 −  𝑀1(𝐧𝟐, 𝜆) 𝑀1(𝐧𝟐′, 𝜆)]  .     (A3 − 9) 

 

The second term on the right is 𝑃(𝐧𝟏, 𝐧𝟐′), whence  

 

1 + 𝑃(𝐧𝟐, 𝐧𝟐′)  ≥ | 𝑃(𝐧𝟏, 𝐧𝟐) −  𝑃(𝐧𝟏, 𝐧𝟐′) | .     (A3 − 10)     
 

[End derivation.] 

 

Equation (A3−10) is Bell’s Inequality. 

 

In B64 there follows a short argument that ends in a counter-example to (A3−10), thus showing 

that (A3−10) is inconsistent with the quantum-theoretical result, Equation (A3−3). The counter-

example consists of three unit vectors n1, n2 and n2' all lying in a plane. The unit vectors n1 and 

n2' are perpendicular to each other, while n2 lies midway between them, that is, 45° from each of 

them. Then the quantum-mechanical expectation values would be 

 

 

   𝑃(𝐧𝟏, 𝐧𝟐)  =  −𝐧𝟏 • 𝐧𝟐  =  −0.707              (A3 − 11a) 

   𝑃(𝐧𝟏, 𝐧𝟐′) =  −𝐧𝟏 • 𝐧𝟐
′ =       0                      (A3 − 11b) 

   𝑃(𝐧𝟐, 𝐧𝟐′)  =  −𝐧𝟐 • 𝐧𝟐′ =  −0.707             (A3 − 11c) 

 

which is obviously inconsistent with Bell’s Inequality (A3−10): 

 

1 + (−0.707) = 0.293 ≱ | −0.707 − 0 |  = 0.707    (A3 − 12) 

 

It is thus ostensibly proven that inserting local hidden variables into the quantum-mechanical 

calculation for the Bohm thought experiment leads to a contradiction with quantum mechanics. 

 

Appendix 4. On “combinatorial” derivations of Bell’s Inequality  

 

Distinct from the original derivation of Bell’s Inequality in B64, there is a class of derivations of 

Bell’s Inequality which I call the “combinatorial” derivations. Bell (1981; reprinted in Bell, 

1987) refers the origins of this class of derivations to Wigner and d’Espagnat. Sakurai (1994) 

refers them to Wigner. It seems necessary in the context of this article to comment on these, 

though the discussion here must be brief and thus does not do justice to the subject. For details of 

the combinatorial derivations, please see the references.  

 

The combinatorial derivations are set in a variety of story lines. The most famous and the most 

fanciful is that of Bertlmann’s socks (Bell, 1981; see also Baggott, 1992). Other variations that I 

have encountered are those of Sakurai (1994), Rieffel and Polak (2011), and Nielsen and Chuang 

(2010). Presumably there are others, possibly many others. Although there are some minor 
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variations in the substance of the assumptions that are used, all of the story lines clothe 

essentially the same argument. 

 

The essence of the combinatorial derivations is to set up some hypothetical system that satisfies 

Einstein’s objections to non-commuting observables and unpredictability by giving some set of 

objects definite values of one or more binary variables (i.e., observables) prior to being observed. 

In each hypothetical system the general framework of Bohm’s two-particle experiment can be 

recognized, even when, as in the example of Bertlmann’s socks, the system is not a narrative of 

particles and spins. From the characteristics of the hypothetical system, Bell’s Inequality, or, 

equivalently, the CHSH Inequality, is derived by counting the different possible combinations of 

outcomes of observations made on the objects and relating this to the expected number of times 

each outcome would be obtained. It is then shown that the derived inequality (Bell’s, or the 

CHSH, as the case may be) is in conflict with both the theory and the results of the Bohm 

experiment, thus ostensibly falsifying Einstein’s objections to the completeness of quantum 

mechanics. 

 

This approach is different from that of B64. The development of Bell’s Inequality in B64 in 

effect claims (incorrectly, as we have seen) to stipulate the quantum theory of the Bohm 

experiment, and then to develop the implications of adding hypothetical local variables to the 

quantum theory. One might say that the combinatorial derivations, which arrive at the same 

inequality as B64, are more accurately self-aware in regard to what they are actually assuming, 

in that they do not stipulate the quantum theory – quite the opposite. Moreover, I am not aware 

of mathematical errors per se in the combinatorial derivations, unlike in B64. 

 

As stated above, each of the combinatorial derivations begins by describing a specific, explicitly 

non-quantum system that is designed to appeal to “common sense” and does not exhibit, indeed, 

cannot exhibit, the correlations between detectors that are expected in the Bohm experiment. The 

behavior of this non-quantum system, and especially the ways in which it yields results that are 

different from the quantum theory of the Bohm experiment, are analyzed. This is interesting and 

instructive. But comparing and contrasting hypothetical, specific, explicitly non-quantum systems 

with the quantum theory of the Bohm experiment does not constitute a proof that it is impossible 

that any quantum system could exist in which the measured values of non-commuting 

observables might emerge from as-yet unknown local properties and processes in the particle and 

its interaction with the local detector. In other words, such comparison and contrast does not 

constitute a proof that it is impossible that the physical phenomena described in quantum 

mechanics as the singlet state can exist without the property of spooky action.  

 

Moreover, with regard to unknown non-deterministic local processes, the combinatorial 

derivations do not speak. The hypothetical systems considered in the combinatorial derivations 

are always deterministic. Einstein, of course, objected to non-deterministic processes, though not 

as much as he objected to spooky action. However, as previously stated, we need not take the 

point of view that all three of EPR’s objections to the completeness of quantum mechanics must 

stand or fall together.  
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